
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18109  | https://doi.org/10.1038/s41598-020-75143-0

www.nature.com/scientificreports

Patterns of enhancement in paretic 
shoulder kinematics after stroke 
with musical cueing
Shinil Kang1, Joon‑Ho Shin2, In Young Kim1, Jongshill Lee1, Ji‑Yeoung Lee3 & Eunju Jeong4,5*

Musical cueing has been widely utilised in post-stroke motor rehabilitation; however, the kinematic 
evidence on the effects of musical cueing is sparse. Further, the element-specific effects of musical 
cueing on upper-limb movements have rarely been investigated. This study aimed to kinematically 
quantify the effects of no auditory, rhythmic auditory, and melodic auditory cueing on shoulder 
abduction, holding, and adduction in patients who had experienced hemiparetic stroke. Kinematic 
data were obtained using inertial measurement units embedded in wearable bands. During the 
holding phase, melodic auditory cueing significantly increased the minimum Euler angle and 
decreased the range of motion compared with the other types of cueing. Further, the root mean 
square error in the angle measurements was significantly smaller and the duration of movement 
execution was significantly shorter during the holding phase when melodic auditory cueing was 
provided than when the other types of cueing were used. These findings indicated the important 
role of melodic auditory cueing for enhancing movement positioning, variability, and endurance. 
This study provides the first kinematic evidence on the effects of melodic auditory cueing on 
kinematic enhancement, thus suggesting the potential use of pitch-related elements in psychomotor 
rehabilitation.

Stroke is a leading cause of long-term functional disability1, resulting in increased dependency2 and social 
isolation3,4 as well as decreased quality of life of patients5,6. Approximately 80% of stroke survivors have upper-
limb dysfunction, varying from gross to complex and fine motor movements7. Post-stroke upper-limb reha-
bilitation remains challenging8–11, and the diverse approaches and methodologies have yielded controversial 
results11,12. Recently, physicians and researchers have explored the potential of using diverse types of sensory 
cueing as a complement to conventional, vision-oriented approaches for motor rehabilitation13–15. Auditory 
stimulation has especially shown beneficial effects in enhancing movement execution16–20. Such stimuli may be 
perceived from all directions and reach across distances, making them perceptible even when the patient is not 
consciously or attentively listening21. Further, they immediately increase the excitability and readiness of motor 
execution, entrain the periodicity of movement patterns, and allow individuals to anticipate and prepare for the 
forthcoming movement22,23.

Auditory-motor enhancement is believed to have multifaceted mechanisms. At the perceptual level, audi-
tory stimuli reach the brain faster than visual and tactile stimuli24–26. The auditory system has a high temporal 
resolution27,28 and easily synchronises with the temporal periodicity of movements29,30. At the neuronal level, 
auditory cueing modulates neuromagnetic β oscillations31,32, recruits movement-specific motor neurons33, and 
increases the variability in musculoskeletal activation patterns34. Most important, neural substrates involved in 
auditory processing closely communicate with those modulating motor timing, sequencing, and execution35–37. 
This is evidenced by the presence of a cortico-subcortical network that involves the putamen, supplementary 
motor area, premotor cortex, and auditory cortex38–41. Such auditory-motor connectivity is well represented and 
adopted in clinical studies. For example, rhythmic auditory stimulation (RAS), one of the techniques used in 
neurologic music therapy, leads to enhanced lower- and upper-extremity movements in patients with neurologi-
cal impairments42–44. Specific to the upper limbs, movement timing45 and movement trajectory smoothness46 
and velocity45,47 were greatly improved when RAS training was used in previous studies.

However, research on pitch-related elements has been relatively sparse. Perception of pitch and melody is 
part of the intrinsic nature of humans, is based on tonotopic representation in the auditory cortex48–50, and is 
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associated with space perception51,52. Thus, pitch and melody can provide a cognitive representation of move-
ment in terms of spatial location and direction53. For example, ascending and descending melodic contours cue 
upward and downward movements. The effects of pitch-related elements have also been demonstrated in clinical 
studies. Patterned sensory enhancement utilises rhythmic, melodic, and harmonic elements to provide temporal, 
spatial, and dynamic information about the movement54,55 and has been applied to upper-limb rehabilitation55–61. 
However, the results have been inconsistent, which might be due to the non-specific use of musical elements. 
Moreover, to the best of our knowledge, element-specific effects have not been examined using a controlled 
experimental design to date.

Additionally, most previous studies employed conventional observations, rating scales, or questionnaires for 
evaluation56–60, which are inherently subjective and vary depending on the evaluator(s)62. These methodologies 
hardly allow the measurement of kinematic changes throughout upper-limb movements during auditory cueing; 
thus, more sophisticated methodologies are needed. In the present study, we employed inertial measurement 
units (IMUs) to quantify the kinematics of repetitive shoulder abduction, holding, and adduction movements 
in hemiparetic stroke patients. The purpose of the present study was to examine the effects of (1) no auditory 
cueing (NAC), (2) rhythmic auditory cueing (RAC), and (3) melodic auditory cueing (MAC) on the kinematic 
parameters of shoulder movement, including range of motion (ROM), minimum Euler angle (MIN), maximum 
Euler angle (MAX), duration, and root mean square error (RMSE).

Results
Table 1 shows the descriptive findings. During the holding phase, there existed a significant main effect of the cue 
on the ROM [F(2,30) = 8.801, p < 0.01] and MIN [F(2,30) = 9.087, p < 0.01] (Fig. 1). A pairwise post-hoc comparison 
with Bonferroni correction revealed that the ROM was greater in NAC than in MAC (p < 0.0167), whereas the 
MIN was higher in MAC than in NAC (p < 0.0167). A higher MIN indicated that MAC can assist in the main-
tenance of shoulder holding at a higher position. The smaller ROM observed in MAC than in NAC and RAC 
indicated that MAC helped maintain a less variable shoulder angle with less Euler angle drift.

Further, there existed a significant main effect of cue on the duration [F(2,30) = 22.028, p < 0.001]. A pairwise 
comparison showed that during the holding phase, the duration of shoulder movement was significantly longer 
in NAC than in RAC (p < 0.0167), in NAC than in MAC (p < 0.0167), and in RAC than in MAC (p < 0.0167). 
Interestingly, there also existed a significant main effect of cue on the duration [F(2,30) = 6.724, p < 0.01] in the 
adduction phase. Although the pairwise comparison yielded insignificant results for all pairs (p > 0.0167), the 
duration associated with MAC was the longest, followed by that associated with RAC and then NAC.

We also performed a movement variability (MV) analysis. General approaches to MV quantification in 
upper-limb movements are typically based on the distribution of angle, acceleration, and velocity63. During the 
holding phase, there was a significant main effect of cueing on the RMSE [F(2,30) = 8.109, p < 0.01]. A pairwise 
post-hoc comparison revealed significantly smaller RMSE values in MAC than in NAC (p < 0.0167) and RAC 
(p < 0.0167) (Fig. 1).

We calculated RMSE as a MV indicator because Euler angle values are sensitive for the measurement of 
movement acceleration and deceleration. Figure 2 shows the Euler angle variability between the affected and 
intact sides (black line) during the holding phase, as compared with the fitted curve (red line). The Euler angle 
of the affected side showed a sudden decrease after the arm approached the highest position and before the start 

Table 1.   Descriptive statistics of kinematic parameters. ROM range of motion, MIN minimum Euler angle, 
MAX maximum Euler angle, RMSE root mean square error, NAC no auditory cueing, RAC​ rhythmic auditory 
cueing, MAC melodic auditory cueing, M mean, SD standard deviation.

Kinematic parameter

Abduction Holding Adduction

NAC RAC​ MAC NAC RAC​ MAC NAC RAC​ MAC

ROM

M 127.27 128.61 128.33 13.01 10.25 8.32 119.88 121.55 123.57

SD 53.58 52.33 53.35 11.84 10.42 8.32 56.91 54.82 55.91

MIN

M 4.63 5.15 5.33 119.43 122.95 125.48 4.65 5.01 5.00

SD 10.53 12.41 11.12 57.00 54.63 55.98 9.89 12.52 10.85

MAX

M 131.91 133.79 133.68 135.63 135.78 135.50 124.60 126.67 128.60

SD 54.48 52.29 53.79 54.74 52.10 54.22 57.87 54.38 56.14

RMSE

M 11.91 12.97 12.78 1.87 1.62 1.24 13.37 13.08 13.69

SD 8.63 8.67 8.21 1.64 1.36 1.18 10.96 9.60 9.91

Duration

M 295.44 300.36 312.59 259.60 232.90 199.63 330.24 351.84 373.36

SD 66.57 64.22 64.38 90.02 82.63 55.01 73.95 90.27 93.52
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of the adduction phase. This finding was similar to observations made in previous studies that investigated the 
stroke-specific kinematic features of shoulder movements63–66.

Further, we scrutinised the Euler angle profiles during the holding phase. Figure 3 shows representative Euler 
angle magnitude profiles. A visual inspection revealed that, in all patients except P2 and P11, less Euler angle 
profile variability was observed in MAC than in NAC. Moreover, in most patients except P2, P9, P10, P11, and 
P16, less Euler angle profile variability was observed in MAC than in RAC.

Figure 1.   Significant differences of kinematic parameters of movement. The graphs show means with standard 
errors. (A) ROM during the holding phase. (B) MIN during the holding phase. (C) Duration during the holding 
phase. (D) RMSE during the holding phase. P values are provided for significant differences (p < 0.0167).

Figure 2.   Comparison of Euler angle data of shoulder movement. (A) Data obtained from severely affected 
patients’ shoulders. (B) Data obtained from moderately affected patients’ shoulders.
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Figure 3.   Movement variability profile using Euler angle data. Representative RMSE profiles of the magnitudes 
of the Euler angle of 16 patients during the shoulder movement holding phase are shown. The x-axis displays 
100% of the movement cycle: 0% and 100% are the shoulder movement holding times. The y-axis displays the 
normalised Euler angle values. Normalised Euler angle values were used to enhance the comparison among 
patients. The left column shows the NAC condition; the middle column shows the RAC condition; and the right 
column shows the MAC condition.
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Discussion
In the present study, we used IMUs to measure the complex kinematic characteristics of shoulder abduction, 
holding, and adduction movements occurring in conjunction with NAC, RAC, and MAC. The findings revealed 
that MAC significantly increased the MIN and decreased the ROM and RMSE during the holding phase. MAC 
also decreased the duration of the holding phase. Taken together, these findings indicated that MAC enhances 
movement positioning, decreases movement variability, and increases movement anticipation and preparation.

First, the results during the holding phase showed that the MIN was significantly higher in MAC than in 
NAC and that the ROM was significantly greater in NAC than in MAC. These findings collectively indicated 
that the MIN of the shoulder was maintained at the highest position with less movement deviation in MAC. 
The enhancement observed in MAC occurred because the participants were provided with information about 
movement directions until they reached their maximum shoulder angle. These results are similar to those of 
previous studies that examined the effects of music cognition on movement, demonstrating that pitch contours 
can increase the cognitive awareness of spatial information during motion51 and actually enhance limb position-
ing during the execution of vertical movements67.

Second, the RMSE was significantly smaller in MAC than in NAC and RAC during the holding phase. These 
findings indicated that the observed Euler angle data, which can sensitively detect movement acceleration and 
deceleration, were best fitted to the predicted linear regression model in MAC; thus, MAC yielded the smallest 
RMSE. Note that during the holding phase, MAC involved an isochronous rhythm combined with a 740-Hz 
stationary contour, which is higher than the tone used in RAC (440 Hz, see Fig. 1). Thus, the closer RMSE values 
of the observed data to the predicted model in MAC was possibly due to the effect of high-pitched sequences 
embedded in the middle of a melodic contour on the cognitive representation of movement in terms of spatial 
location53, which allowed the participants to sustain their shoulders with less movement variability. In line with 
the current findings, a previous study reported that a melody cue was best for unconstrained point-to-point hand 
movements, prompting less variable hand movements from the initial to the final position within a given time 
period68. Moreover, previous studies have demonstrated that auditory cueing significantly decreases movement 
variability45,46,69–72. For example, Thaut et al. reported that the kinematic data obtained in auditory cueing fit the 
predicted model significantly better than those from a no auditory cueing condition. This result was possibly due 
to the entrainment of movement execution patterns with the patterns embedded in the rhythm46.

Third, the duration was significantly shorter in MAC than in NAC, in RAC than in NAC, and in MAC than 
in RAC. RAC consists of an isochronous rhythm, whereas MAC consists of pitch contours presented with an 
isochronous rhythm. In the current study, this rhythm pattern seemed to play a role in movement anticipation 
and preparation in both RAC and MAC. In a review study, Avanzino et al.73 reported that rhythm provides a 
temporal structure that enhances motor timing, motor sequencing, and movement control. Moreover, isoch-
ronous rhythm was reported to induce a temporal locking or entrainment process between motor movements 
and the external auditory rhythm22.

In addition, the shorter duration of RAC and MAC can be interpreted as a cognitive influence of musical cue-
ing on anticipation and preparation for movement. Schaffert et al.74 proposed that auditory rhythm can prime the 
motor system and facilitate further anticipation of and preparation for cyclic movements75. Such influences, when 
observed in healthy and clinical (e.g. post-stroke) populations, manifest through the activation or establishment 
of alternative pathways76–78. The available findings implied that cognitive involvement in auditory processing 
(i.e. anticipation) plays a role in motor preparation and execution79,80. Importantly, as the pitch contours embed-
ded in RAC are more salient to providing the structure of movement, patients are more likely to anticipate and 
prepare for the forthcoming movement. In general, music involves a high-order temporal organisation of sound 
events, of which allows individuals to make predictions about future events and raises expectations37. Previous 
studies that employed melodic feedback in post-stroke arm rehabilitation also reported improved smoothness 
of movement because of such anticipation81,82.

Collectively, MAC led to an effective, stable maintenance of the shoulder in the desired position during the 
holding phase. The closer fit observed in MAC indicated a smaller movement variability possibly due to the 
effect of pitch in addition to the effect of rhythm. The shorter movement time in MAC indicates that rhythm 
components play a role in movement anticipation and preparation and are more prominent when presented with 
melodic components. Compared with MAC, RAC showed significant enhancement only in movement time.

Our study had some limitations. We performed parameter extraction for the Euler angles of the sagittal axis 
because this axis provides more relevant information about our target movement. Obtaining similar data from 
two other axes and involving another body part (wrist, hand, neck, etc.) may provide a more comprehensive 
index for the movement features of the affected shoulder (e.g. post-stroke compensatory strategies). However, 
this study was a preliminary attempt to quantify the kinematic parameters of repetitive paretic shoulder abduc-
tion, holding, and adduction in post-stroke patients. As the effects of musical cueing on the kinematic changes of 
upper-limb movements have not yet been specified and the scope of their application has been limited, the pre-
sent study provides important information about the specific roles of the elements as sensory cues and promotes 
a more appropriate use of the elements for upper-limb rehabilitation. Future studies are needed to find a more 
comprehensive index of the relationship between musical cueing and functional upper-limb movements and to 
develop a more efficient and targeted upper-limb patterned sensory enhancement protocol. Lastly, combining 
musical cueing with visually oriented virtual reality rehabilitation may yield better psychomotor rehabilitation.

In conclusion, auditory cueing led to enhanced movements, across all parameters, when compared with 
movements performed without auditory cueing in this study. In particular, MAC effectively increased the MIN 
but decreased the RMSE and duration in the holding phase. These findings seem to be associated with increased 
movement positioning, decreased movement variability, and enhanced movement anticipation and preparation. 
Such findings suggest the potential of pitch-related components for directing specific movement parameters and 
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the potential use of musical cueing in psychomotor rehabilitation. Given that muscle endurance is necessary to 
allow smooth control of movements, which is typically impaired in stroke patients (as evidenced by their daily 
functional movements)83–85, the current findings can be used for the conclusive measurement of motor function 
recovery and for rehabilitation training86.

Methods
Participants.  This study was approved by the Institutional Review Board at the National Rehabilitation Cen-
tre and performed in accordance with relevant guidelines and regulations. All participants provided written 
informed consent, in accordance with the Declaration of Helsinki. Informed consent to publish identifying 
images was also obtained from participants. Eighteen patients with hemiparetic stroke (Male = 10, Female = 8) 
volunteered to participate in the study and were recruited from the rehabilitation centre. The patients were eli-
gible if they had upper-limb hemiparesis secondary to first-ever ischaemic or haemorrhagic stroke, Brunnstrom 
Stages of Motor Recovery scores > 2 for the affected proximal upper limb, the cognitive ability to understand and 
follow instructions, and the capability and willingness to participate in the experiment. Patients who had more 
than 3 months of regular involvement in musical activities and/or professional training and those with sensory 
impairments were excluded from the study. Two of the 18 patients were excluded because of unreliable signal-
to-noise ratios. The average age of the patients was 49.78 (SD = 15.55) years, and the average time since stroke 
was 15.22 (SD = 12.82) months. The patients had an average of 12.28 (SD = 2.80) years of education, an average 
Brunnstrom Stage of Motor Recovery score of 4.67 (SD = 0.94), and an average shoulder abduction ROM of 
138.33° (SD = 29.06).

Movement task and auditory stimuli.  To examine the immediate effects of auditory cueing on paretic 
shoulder movements, we selected shoulder abduction, holding, and adduction movements as previous studies 
had reported the stroke-specific kinematic features of shoulder movements87–90. A visual avatar, from a third-
person perspective, was provided to guide the movement. The avatar was programmed to raise its arms from the 
side to 180° (abduction phase, 3 s), maintain its arms at that position (holding phase, 3 s), and then slowly lower 
its arms back to the side (adduction phase, 3 s). The participants were instructed to perform the movements in 
conjunction with the avatar seen on the computer screen. The avatar was generated using a model of Rehab Mas-
ter (Rehab Master, Seoul, Korea) and programmed using Unity (Unity Technologies, Copenhagen, Denmark).

Two types of auditory stimuli were used as auditory cues and presented via two stereo speakers. RAC consisted 
of a series of 50-ms tones with an inter-stimulus interval (ISI) of 200 ms (i.e. a beep sound on digital metronome 
at an audio frequency of 440 Hz). MAC consisted of a series of tones presented using the same isochronous 
time pattern as the RAC but at different frequencies. In the present study, RAC and MAC have definite pitches 
and the same isochronous time pattern, so they might also be labelled monotonic rhythm and melodic rhythm, 
respectively. However, we used the terms rhythmic and melodic in accordance with the terminologies used in the 
existing literature. RAC or RAS is a frequently used psychomotor rehabilitation technique. The rhythmic stimuli 
employed in these studies are mainly analogue or digital metronome beats69,76,91 comprising tones presented at 
the same pitch and with an isochronous time pattern. In addition, considering the general definition of melody 
as a combination of pitch and rhythm, it might be better to use the term MAC.

MAC consisted of ascending, stationary, and descending contours generated to musically demonstrate the 
angle of shoulder abduction, holding, and adduction, respectively. In typical participants, shoulder abduction 
involves three different types of muscle—the supraspinatus, deltoid, and trapezius and serratus anterior. The 
supraspinatus initiates from 0° to 15°, the deltoid functions from 15° to 90°, and the trapezius and serratus 
anterior are activated from 90° to 180°92. In addition, the glenohumeral joint contributes 90°–120° of shoulder 
abduction93,94. The range of shoulder movement (0°–180°) was divided into ten equal degrees, and a 12-tone 
scale (C4 to F#5) was assigned to each degree. As 0°, 15°, 90°, 120°, and 180° are important to indicate the muscle 
involvement in shoulder abduction, we selected the pitches that correspond to the degrees (C4, D4, A4, C5, and 
F5#). As 15° corresponds to the microtone between C4# and D4, we selected D. Additional tones were used to 
musically describe the spatial position and trajectory of shoulder movement, yielding an eight-tone ascending 
contour. The first four tones of the ascending contour (C4, D4, E4, and G4) were assigned to shoulder abduction 
from 0° to 89°, and the second four tones (A4, C5, D5, and E5) were assigned to shoulder abduction from 90° to 
179°. The next eight tones of the stationary contour reflect the shoulder holding movement. As maximum effort 
is needed to hold the shoulder at the highest position (typically around 170°–180°), F5# was used to reflect a 
such effort. Figure 4 shows an example of RAC and MAC. The auditory stimuli were generated using a musical 

Figure 4.   An example of auditory cueing. (A) Rhythmic auditory cueing. (B) Melodic auditory cueing.
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instrument digital interface synthesizer connected to a Logic Pro X (Apple, Cupertino, CA, USA) and pro-
grammed in accordance with the avatar movements using Unity (Unity Technologies, Copenhagen, Denmark).

IMUs and equipment setup.  To measure and analyse the effects of cueing on the participants’ shoulder 
movements, we used spatiotemporal kinematic parameters. These parameters were provided by Hanyang IMU 
(H-IMU), which consists of an integrated 9-axis motion tracking sensor (MPU9250; InvenSense, San Jose, CA, 
USA), a microcontroller (MSP430F5338; Texas Instruments, Dallas, TX, USA), a Bluetooth module (PAN1321i; 
Panasonic, Osaka, Japan), and a lithium-ion battery (240 mAh, 3.7 V; DTP, Shenzhen, China). The device allows 
long-term data measurements (Fig. 5). A total of 6 H-IMUs were attached to the head, torso, arms, and fore-
arms of each patient using Velcro straps and were positioned on the dorsal side of each arm and on the anterior 
portion of the head and torso. Signals associated with body movements were generated at < 20 Hz, such that a 
sampling frequency of 100 Hz was sufficient to detect all movements. Thus, all H-IMU signals were measured 
using a sampling rate of 100 Hz. The calculated Euler angles for each of the 6 H-IMUs were transmitted to a 
personal computer using Bluetooth communication. Figure 6 shows the H-IMUs and how they were attached 
to a participant.

In each experiment, the participants underwent a practice period (P1) and an experimental period (P2). P1 
comprised three shoulder abduction-holding-adduction trials, in which the three types of cueing were presented. 
The P1 period allowed the participants to become familiar with the movements and the different types of cue-
ing. P2 comprised three blocks of three cueing conditions. Five trials, each consisting of abduction, holding, 
and adduction phases, were blocked with one of the three cueing conditions and randomly presented to the 
participant while avoiding the consecutive presentation of the same cueing condition. The blocks requiring the 
movement of the affected and unaffected shoulders were presented in an alternating manner.

Figure 5.   In-house-built H-IMU. (A) Cover closed. (B) Cover opened.

Figure 6.   An individual demonstrating shoulder abduction with the H-IMUs attached. (A) Arm at the side. (B) 
Raising one arm halfway. (C) Reaching the arm towards the head.
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Euler angle calculation.  Micro-electromechanical system inertial sensors have a direct-current bias and 
gain error because of the direct-current noise caused by powering of the electric circuit and environmental noise. 
To minimise the error associated with these noises, we calibrated the sensors using an in-house-manufactured 
calibration jig with 9 degrees of freedom (DoFs)95. The calibrated data, c, can be obtained by multiplying the 
uncalibrated data, u, including the original error by the compensated gain value, K, through calibration and 
subtracting the offset error, b. These variables are defined in Eqs. (1–3), respectively. Finally, the calculated cali-
bration equation is shown in Eq. (4)

Thereafter, the Euler angles were calculated using a gradient descent algorithm to provide the quaternions 
based on tri-axis gyroscope, accelerometer, and magnetometer measurements, as shown in Eq. (5). Euler angles 
adopt the ‘ZYX’ rotation sequence to convert quaternion frame rotations in radians96,97. Figure 7 shows an 
example of the calculated Euler angles associated with the three types of cueing

where qx(x = 1, 2, 3, 4) is the estimated orientation of the sensor frame relative to the earth frame.

Movement analysis.  We extracted the kinematic parameters of movement during the three phases (abduc-
tion, holding, and adduction) of shoulder movement. Parameter extraction was performed on the Euler angles 
obtained from the frontal plane around the sagittal axis, which is the axis that provides more relevant informa-
tion about the abduction, holding, and adduction movements of the shoulder. Figure 8 shows the points that 
were included in the movement analysis. The start point (SP) and end point (EP) indicate the initiation of the 
abduction phase and the cessation of the adduction phase, respectively, based on the minimum Euler angle val-
ues. Fiducial points (FP1, FP2) were defined to correspond with the initiation and cessation of the holding phase; 
FP1 represents the maximum point on the Euler angle graph for one cycle.

We selected FP2 values that satisfy the equations below, in which f(x) represents the angle, x represents the 
time point, and i represents the peak points between FP1 and EP. FP2 was not easy to define because the signal-
to-noise ratios were extreme in all participants. Based on our preliminary experimentation and simulations, we 
set a threshold (α) for the between-peak slope (− 0.03) and applied this to all data sets. Small peak points, with 
peak values below − 0.03, were not considered to be reliable FP2 values (6, 7)

(1)u =
[

ux uy uz
]T

(2)K =





kx 0 0
0 ky 0
0 0 kz





(3)b =
[

bx by bz
]T

(4)c = Ku− b

(5)

∅ = atan2
(

2q3q4 − q1q2, 2q
2
1 + 2q24 − 1

)

θ = −sin−1
(

2q2q4 + 2q1q3
)

ϕ = atan2
(

2q2q3 − 2q1q4, 2q
2
1 + 2q22 − 1

)

Figure 7.   Kinematic recording of hemiparetic shoulder abduction, holding, and adduction movements across 
three types of cueing.
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Based on previous studies in clinical populations that revealed the meaning of Euler angle values relative to 
motor movements98–100, we calculated the kinematic parameters using Euler angles (Table 2).

ROM.  Shoulder movement is characterised by many DoFs and a wide ROM at the joints101. The ROM is 
important for assessing joint range, control, strength, and willingness to perform a movement102. The clinical 
implication of the kinematic ROM has recently been expanded to the determination of diagnoses and the suc-
cess of therapeutic interventions. Also, previous studies have reported the validity and reliability of IMUs for 
measuring parameters of shoulder joint motion, such as the ROM103–105. In the present study, the ROM refers to 
the difference between the MIN and MAX, using the anatomical DoFs for human limbs64,106, and was calculated 
for each of the three movement phases. In the abduction and adduction phases, the ROM reflects the largest 
Euler angle, as arm raising was initiated from approximately 0°. During the holding phase, the ROM reflects the 
variance among the Euler angles.

Movement variability (MV).  General approaches to MV quantification in upper-limb movements are typically 
based on the distribution of characteristic values, such as angle, acceleration, and velocity63. Movement vari-
ability is associated with the variety of coordination patterns used to complete tasks65,66. For the current study, 
we calculated RMSEs using a linear regression model and considered the parameter as an indicator of MV. 
The reason that we considered RMSE as a measure of MV was that the Euler angle values measure movement 
acceleration and deceleration. Thus, the RMSE represents the difference between the generated linear regression 

(6)P =

{

xi

∣

∣

∣

∣

f (xFP1)− f (xi)

xFP1 − xi
< α, FP1 ≤ i ≤ EP

}

(7)xFP2 = max (P), yFP2 = f (xFP2), FP2 = (xFP2, yFP2)

Figure 8.   Sample raw Euler angle data obtained from one trial of shoulder abduction, holding, and adduction. 
SP start point, EP end point, FP fiducial point.

Table 2.   Spatiotemporal features. ∅phase Euler angle values obtained during one phase of each trial, n number 
of samples for the phase, ̂∅ linear regression value, t time point, MIN minimum Euler angle of the phase, MAX 
maximum Euler angle of the phase, RMSE root mean square error.

Kinematic parameter Formula Description

ROM max
(

∅phase

)

−min(∅phase)

MIN min(∅phase)

MAX max(∅phase)

RMSE
√

1
n

∑FP2
i=FP1 (∅i − ̂∅i)

2 Calculated using a linear regression model

Duration tendphase − tstartphase Time spent to complete one phase of each trial
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model (fitted curve) and the obtained Euler angle data, which indicate the ideal movement trajectory and the 
raw data associated with shoulder movement, respectively. In the current study, MV during the abduction and 
adduction phases might indicate movement smoothness, while MV during the holding phase might indicate 
movement endurance.

Movement time (MT).  MT refers to the time required to execute a movement and is defined as the interval 
between movement onset and movement offset, representing temporal efficiency107–109. In the present study, MT 
included the duration of shoulder abduction (time between the onset of arm raising and attaining the maximum 
shoulder angle, SP to FP1), shoulder holding (time of maintaining the maximum shoulder angle, FP1 to FP2), 
and shoulder adduction (time between the onset of arm lowering and back to the initial position, FP2 to EP; see 
Fig. 8 for details). In general, MT is associated with muscle endurance, which is the ability of a muscle to sustain 
repetitive isometric or isotonic contractions110.

Statistical analysis.  The kinematic parameters from the affected side were used and categorised into the 
three phases of shoulder movement (abduction, holding, and adduction). A one-way repeated measures analysis 
of variance was performed to compare the kinematic parameters across the three cueing conditions (NAC, RAC, 
and MAC). All analyses were conducted using R (R Project for Statistical Computing, Vienna, Austria).

Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author 
upon reasonable request.
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